Hecke algebra solutions to the reflection equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 L521
(http://iopscience.iop.org/0305-4470/27/14/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:29

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Hecke algebra solutions to the reflection equation

Dan Levy \dagger and Paul Martin \ddagger
\dagger Department of Mathematics, Ben-Gurion University of the Negev, PO Box 653, BeerSheya 84105, Israel
\ddagger Mathematics Department, City University, Northampton Square, London ECIV OHB, UK

Received 27 April 1994

Abstract

We construct solutions to Sklyanin's reflection equation in the case in which the bulk Yang-Baxter solution is of Hecke algebra type. Each solution constitutes an extension of the Hecke algebra together with a spectral parameter dependent boundary operator, $K(\theta)$. We solve for the defining relations of the extension, and for the spectral parameter dependence of the boundary operator. The problem of finding concrete matrix solutions to the reflection equation is thus reduced to that of constructing finite dimensional representations of the Hecke algebra extension. This problem is solved in the generic case by establishing isomorphism with an affine Hecke algebra quotient whose representation theory is known.

In 2D lattice statistical mechanics it is found (see Baxter [1]) that the Yang-Baxter equations:

$$
\begin{align*}
& R_{i}\left(\theta_{1}\right) R_{i+1}\left(\theta_{1}+\theta_{2}\right) R_{i}\left(\theta_{2}\right)=R_{i+1}\left(\theta_{2}\right) R_{i}\left(\theta_{1}+\theta_{2}\right) R_{i+1}\left(\theta_{1}\right) \tag{1}\\
& {\left[R_{i}\left(\theta_{1}\right), R_{j}\left(\theta_{2}\right)\right]=0 \quad i \neq j \pm 1} \tag{2}
\end{align*}
$$

serve as integrability conditions. However, Baxter's method of constructing commuting transfer matrices from a given solution of (1) and (2) requires periodic or quasi-periodic boundary conditions. In [2] Sklyanin proposed an ingenious extension of Baxter's formalism which reconciles integrability with non-periodic boundaries-for a given solution of equations (1) and (2) one looks for a boundary operator $K(\theta)$ satisfying the equations:
$R_{1}\left(\theta_{1}-\theta_{2}\right) K\left(\theta_{1}\right) R_{1}\left(\theta_{1}+\theta_{2}\right) K\left(\theta_{2}\right)=K\left(\theta_{2}\right) R_{1}\left(\theta_{1}+\theta_{2}\right) K\left(\theta_{1}\right) R_{1}\left(\theta_{1}-\theta_{2}\right)$
$\left[R_{i}\left(\theta^{\prime}\right), K(\theta)\right]=0 \quad i \geqslant 2$.
Solutions to (1)-(4) may lead to an integrable model whose boundary conditions are encoded in $K(\theta)$. For Sklyanin's scheme to work, $R_{i}(\theta)$ and $K(\theta)$ have to satisfy some additional conditions. In particular, the 'unitarity condition on $K(\theta)$ ' which plays a role in the present work requires:

$$
\begin{equation*}
K(\theta) K(-\theta)=\phi(\theta) 1 \quad(\phi \text { scalar }) \tag{5}
\end{equation*}
$$

While many solutions to (1) and (2) are known, the study of (3) and (4) was less extensive (but see [2-6] which also discuss physical properties of some of the resulting models). Recently, Zamolodchikov and Ghoshal [7] discussed the application of equations (1)-(5) to 2 D integrable S -matrix theories. In the scattering picture, $R_{i}(\theta)$ represents a 2 -particle
scattering in the bulk, while $K(\theta)$ represents a reflection from a wall at the boundary [3], and so (3) is called the reflection equation (RE). They point out that the collection of all integrable boundary scattering theories which have the same bulk scattering properties is an interesting object to study (see [7] for a full discussion and motivation). Here we study solutions to (3)-(5) for a given solution of (1) and (2) in a specific algebraic framework. We solve for $K(\theta)$ in cases for which $R_{i}(\theta)$ is given in terms of Hecke algebra generators:

For q a scalar parameter (we will also use $q=\exp (\mathrm{i} \gamma)$), we denote by $H_{n}=H_{n}(q)$ the A_{n} Hecke algebra over field $\mathbb{C}(q)[10,12]$ which is generated by $\left\{1, U_{1}, U_{2}, \ldots, U_{n-1}\right\}$ satisfying:

$$
\begin{aligned}
U_{i} U_{i} & =\left(q+q^{-1}\right) U_{i} \\
U_{i} U_{i+1} U_{i}-U_{i} & =U_{i+1} U_{i} U_{i+1}-U_{i+1} \\
{\left[U_{i}, U_{j}\right] } & =0 \quad|i-j|>1 .
\end{aligned}
$$

The 'Hecke bulk solution' of the Yang-Baxter equation (YBE) (1) is then

$$
\begin{equation*}
R_{i}(\theta)=\sin (\gamma+\theta) 1-\sin (\theta) U_{i} \tag{6}
\end{equation*}
$$

Any representation of H_{n} gives a matrix solution to (1) and (2) via (6). Substituting (6) into (3) we get

$$
\begin{align*}
\sin \left(\theta_{1}+\theta_{2}\right) \sin & \left(\theta_{1}-\theta_{2}\right)\left[U_{1} K\left(\theta_{1}\right) U_{1}, K\left(\theta_{2}\right)\right]=\sin \left(\gamma+\theta_{1}-\theta_{2}\right) \sin \left(\theta_{1}+\theta_{2}\right)\left(K\left(\theta_{1}\right) U_{1} K\left(\theta_{2}\right)\right. \\
& \left.-K\left(\theta_{2}\right) U_{1} K\left(\theta_{1}\right)\right)+\sin \left(\gamma+\theta_{1}+\theta_{2}\right) \sin \left(\theta_{1}-\theta_{2}\right)\left(U_{1} K\left(\theta_{1}\right) K\left(\theta_{2}\right)\right. \\
& \left.-K\left(\theta_{2}\right) K\left(\theta_{1}\right) U_{1}\right)-\sin \left(\gamma+\theta_{1}+\theta_{2}\right) \sin \left(\gamma+\theta_{1}-\theta_{2}\right)\left[K\left(\theta_{1}\right), K\left(\theta_{2}\right)\right] . \tag{7}
\end{align*}
$$

Let χ be an associative algebra over \mathbb{C} with basis $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{d}\right\}$. An algebraic solution to (1)-(5) is one in which $K(\theta)$ takes values in such a χ (cf equation (6)):

$$
\begin{equation*}
K(\theta)=\sum_{\alpha=1}^{d} f_{\alpha}(\theta) \chi_{\alpha} \quad\left(f_{\alpha} \text { scalars }\right) \tag{8}
\end{equation*}
$$

To satisfy (4) we require $\left[U_{i}, \chi\right]=0$ for $i>1$. Inserting (8) into (7) and (5) we look for solutions in the form of a set of consistent θ independent relations between U_{1} and χ together with constraints on the functions $f_{\alpha}(\theta)$. The relations will define a new algebra A which is an extension of H_{n} by χ. Thus, a Hecke algebra solution to (1-5) consists of an algebra A and a function $K(\theta) \in A$.

Such ($A, K(\theta)$) pairs are given for $d=2$ in the following section and for arbitrary d in theorem 1. Note that stronger algebraic relations allow relatively weaker constraints on the functions (e.g. (7) is solved by $\left[U_{1}, \chi\right]=0$ and χ commutative-we will call this the trivial solution). Here we look for a minimal set of relations which are sufficient for a solution, and determine $f_{\alpha}(\theta)$ for this set. Matrix solutions to (3)-(5) will thus arise from matrix representations of the H_{n} extension. Next we facilitate the complete characterization of finite dimensional representations in the generic case by establishing an isomorphism with a known affine Hecke quotient. We conclude with a discussion of outstanding problems.

For $d=1$ we get $\chi=\mathbb{C}$ and $K(\theta)=f_{1}(\theta) 1$ solves RE for any $f_{1}(\theta)$. Unitarity gives $f_{1}(\theta) f_{1}(-\theta)=\phi(\theta)$. The case $d=2$ better illustrates our programme, so we start with this.

We will now consider the case $d=2$.

All possibilities here are encapsulated by $\chi(b, c) \equiv\left\langle 1, X: X^{2}=b X+c 1\right\rangle$ where b and c are scalar parameters. We get:

$$
\begin{equation*}
K(\theta)=f_{1}(\theta) 1+f_{2}(\theta) X \tag{9}
\end{equation*}
$$

An immediate consequence of (9) is that $\left[K\left(\theta_{1}\right), K\left(\theta_{2}\right)\right]=0$ for all θ_{1}, θ_{2}. We assume that $f_{2}(\theta)$ is not identically zero, otherwise we are dealing with a $d=1$ case. Then (7) gives:

$$
\begin{align*}
{\left[U_{1}, X\right](\sin \gamma} & \left(f_{2}\left(\theta_{1}\right) f_{1}\left(\theta_{2}\right) \sin \left(2 \theta_{2}\right)-f_{1}\left(\theta_{1}\right) f_{2}\left(\theta_{2}\right) \sin \left(2 \theta_{1}\right)\right)-b \sin \left(\theta_{1}-\theta_{2}\right) \\
& \left.\times \sin \left(\theta_{1}+\theta_{2}+\gamma\right) f_{2}\left(\theta_{1}\right) f_{2}\left(\theta_{2}\right)\right)+\left(U_{1} X U_{1} X-X U_{1} X U_{1}\right) f_{2}\left(\theta_{1}\right) f_{2}\left(\theta_{2}\right) \\
& \times \sin \left(\theta_{1}-\theta_{2}\right) \sin \left(\theta_{1}+\theta_{2}\right)=0 . \tag{10}
\end{align*}
$$

We have two possibilities-the trivial solution, or $\left[U_{1}, X\right] \neq 0$. In the latter case, since $f_{2}(\theta) \neq 0$ we must assume a linear relation between ($U_{1} X U_{1} X-X U_{1} X U_{1}$) and $\left[U_{1}, X\right]$. We parameterize this relation in the following way:

$$
\begin{equation*}
\left(U_{1} X U_{1} X-X U_{1} X U_{1}\right)=(b \cos \gamma+k \sin \gamma)\left[U_{1}, X\right] \tag{11}
\end{equation*}
$$

where k is θ independent. The structure of the resulting Hecke extension is known, so it only remains to solve for $f_{\alpha}(\theta)$. Inserting (11) into (10) and dividing by $f_{1}\left(\theta_{1}\right) f_{1}\left(\theta_{2}\right)$ we get

$$
\begin{equation*}
\frac{f_{2}(\theta)}{f_{1}(\theta)}=-\frac{2 \sin (2 \theta)}{k \cos (2 \theta)+b \sin (2 \theta)+f} \quad(f \text { any constant }) . \tag{12}
\end{equation*}
$$

Taking $\phi=1$ the unitarity equation (5) gives:

$$
\begin{align*}
& f_{1}(\theta) f_{1}(-\theta)+c f_{2}(\theta) f_{2}(-\theta)=1 \tag{13}\\
& f_{1}(\theta) f_{2}(-\theta)+f_{1}(-\theta) f_{2}(\theta)+b f_{2}(\theta) f_{2}(-\theta)=0 . \tag{14}
\end{align*}
$$

Dividing both equations by $f_{1}(\theta) f_{1}(-\theta)$ we find that (14) is automatically satisfied by (12), while (13) can be solved for $f_{1}(\theta)$, e.g.

$$
\begin{equation*}
f_{1}(\theta)=\frac{k \cos (2 \theta)+b \sin (2 \theta)+f}{k \cos (2 \theta)+\sqrt{b^{2}+4 c} \sin (2 \theta)+f} . \tag{15}
\end{equation*}
$$

Note that (15) is non-unique [7]. For example, if $f_{1}(\theta)$ is any solution to (13), then $f_{1}(\theta) h(\theta)$ is also a solution provided that $h(\theta) h(-\theta)=1$.

Now we look at higher d solutions.
We now give solutions for commutative semi-simple χ, of arbitrary dimension d. Let χ^{d} be the d-dimensional commutative semi-simple \mathbb{C}-algebra, i.e. $\chi^{d}=\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}$ (d summands). Let v_{α} be the unique projection on the α th summand of χ^{d}, so that $v_{\alpha} v_{\beta}=\delta_{\alpha \beta} v_{\beta}$ and $\sum_{\alpha=1}^{d} v_{\alpha}=1$. Then a convenient basis for χ^{d} is $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$. Let $\left\{w_{1}(\theta), w_{2}(\theta), \ldots, w_{d}(\theta)\right\}$ be the eigenvalues of $K(\theta) \in \chi^{d}$, then

$$
\begin{equation*}
K(\theta)=\sum_{\alpha=1}^{d} w_{\alpha}(\theta) v_{\alpha} . \tag{16}
\end{equation*}
$$

We will say that $K(\theta)$ is a degenerate if it may be contained in a $\chi^{d^{\prime}}$ subalgebra of $\chi^{d}\left(d^{\prime}<d\right)$. Note that this happens if and only if $K(\theta)$ has degenerate eigenvalues. Note that the $K(\theta)$ given in (16) solves the unitarity equation (5) with $\phi=1$ iff

$$
\begin{equation*}
w_{\alpha}(\theta) w_{\alpha}(-\theta)=1 \quad \forall \alpha \tag{17}
\end{equation*}
$$

Definition 1 (Hecke algebra extension). Let q be an indeterminate, let a_{-}be a $d(d-1) / 2$ tuple of indeterminates $a_{\alpha \beta}(1 \leqslant \alpha<\beta \leqslant d)$, and set $a_{\alpha \beta}=2 \cos \gamma-a_{\beta \alpha}$ for $\alpha>\beta$. Then $B H_{n}^{d}=B H_{n}\left(q, a_{-}\right)$is the $\mathbb{C}\left(q, a_{-}\right)$algebra generated by $\left(H_{n}(q), \chi^{d}\right\rangle / \sim$ where \sim is:

$$
\begin{align*}
& {\left[\chi^{d}, U_{i}\right]=0 \quad \forall i>1} \tag{18}\\
& {\left[U_{1} v_{\alpha} U_{1}, v_{\beta}\right]=a_{\alpha \beta}\left(v_{\alpha} U_{1} v_{\beta}-v_{\beta} U_{\mathrm{t}} v_{\alpha}\right) \equiv a_{\alpha \beta} L_{\alpha \beta} \quad(\alpha \neq \beta)} \tag{19}
\end{align*}
$$

A complete specialization of $B H_{n}^{d}$ is one in which the subring $\mathbb{C}\left[q, a_{-}\right] \rightarrow \mathbb{C}$. In certain such specializations (we discuss existence shortly) we can construct a $K(\theta) \in \chi^{d}$ which solves the reflection and unitarity equations. This construction is our main result (whose proof is by explicit calculation):

Theorem 1. Let A be some complete specialization of $B H_{n}^{d}$ and $w_{1}(\theta)$ a solution of (17) for $\alpha=1$. Then $(A, K(\theta)$) is a non-degenerate solution of (1)-(5) provided that either:

1. If $\sin \gamma=0$, then $a_{\alpha \beta}=\cos \gamma$ for all α, β, and $w_{\alpha}(\theta)$ obeys (17) $\forall \alpha$.
2. If $\sin \gamma \neq 0$, then $(A, K(\theta))$ belongs to one of the following classes. Introduce $c_{\alpha \beta}=a_{\alpha \beta}-\cos \gamma, c_{\alpha}=c_{1 \alpha}$, and let $\delta, \epsilon \in\{-1,1\}$. Then each decreasing sequence $S=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ with $\alpha_{i} \in\{2,3, \ldots, d\}$ and choice (δ, ϵ) determines a class of solutions with d continuous parameters. To obtain a specific solution in a given class we may choose any values for the k parameters c_{λ} with $\lambda \in S$, provided that they are distinct, and distinct from $c_{0}=\delta \cdot(i \sin \gamma)$, any set of distinct values for $d-1-k$ parameters $d_{\alpha}(\alpha \in\{2,3, \ldots, d\}, \alpha \notin S)$ and any value for a parameter $d_{\alpha_{k}}$. Then A is determined as follows, where $\alpha, \beta, \lambda, \mu \neq 1, \alpha, \beta \notin S$ and one or both of $\lambda, \mu \in S$:

$$
\begin{equation*}
c_{\alpha \beta}=c_{0} \frac{\left(d_{\alpha}+d_{\beta}\right)}{d_{\alpha}-d_{\beta}} \quad-c_{\lambda \mu}=\frac{c_{\lambda} c_{\mu}+\sin ^{2} \gamma}{c_{\lambda}-c_{\mu}} \quad c_{\alpha}=c_{0} \tag{20}
\end{equation*}
$$

and $K(\theta)$ is determined by

$$
\begin{equation*}
y_{\alpha}(\theta)=\frac{w_{\alpha}(\theta)}{w_{1}(\theta)}=\frac{c_{\alpha} \cos (2 \theta)+\sin (\gamma) \sin (2 \theta)+d_{\alpha}}{c_{\alpha} \cos (2 \theta)-\sin (\gamma) \sin (2 \theta)+d_{\alpha}} \quad \forall \alpha \in\{2, \ldots, d\} \tag{21}
\end{equation*}
$$

where for $\lambda \in S$

$$
\begin{equation*}
d_{\lambda}=\frac{d_{\alpha_{k}}\left(\sin ^{2} \gamma+c_{\alpha_{k}} c_{\lambda}\right)+\epsilon \sin \gamma\left(c_{\alpha_{k}}-c_{\lambda}\right) \sqrt{c_{\alpha_{k}}^{2}+\sin ^{2} \gamma-d_{\alpha_{k}}^{2}}}{c_{\alpha_{k}}^{2}+\sin ^{2} \gamma} . \tag{22}
\end{equation*}
$$

Let A be as above and let A^{\prime} be its quotient by relations $L_{\alpha \beta}=0$ for some (α, β) pairs. Then $\left(A^{\prime}, K(\theta)\right.$) is a solution of (1)-(5) with $f_{\alpha}(\theta)$ satisfying weaker conditions than those in theorem 1. In the extreme case- $L_{\alpha \beta}=0$ for all (α, β), and no constraints on w_{α} besides (17)-we reproduce the trivial solution $\left[U_{1}, \chi^{d}\right]=0$.

Note that (5) implies $y_{\alpha}(0)= \pm 1$. The +1 value is realized for all values of d_{β} except when $d_{\beta}=-c_{\beta}$, and then $y_{\alpha}(0)=-1$. For example, choosing $d_{\alpha_{k}}=-c_{\alpha_{k}}$ and $\epsilon=1$ gives $d_{\alpha}=-c_{\alpha}$ for all $\alpha \in S$ (see (22)), and leads to a $K(0)$ which is not proportional to unity.

We next set up the mechanism to determine explicit matrix solutions.
Here we show that $B H_{n}^{d}$ is generically isomorphic to a finite dimensional quotient of the affine Hecke algebra of type A_{n}, whose structure is known.

Definition 2. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\beta}\right)$ a d-tuple of indeterminates, define χ^{d} as the commutative algebra over $\mathbb{C}(\lambda)$ with generator X obeying: $\prod_{\alpha=1}^{d}\left(X-\lambda_{\alpha}\right)=0$.

The algebras χ^{d} and χ^{d} are isomorphic via

$$
\begin{equation*}
X \mapsto \sum_{\alpha=1}^{d} \lambda_{\alpha} v_{\alpha} . \tag{23}
\end{equation*}
$$

A specialization of χ^{d} is not isomorphic to χ^{d} unless the images of λ_{α} are distinct.
Definition 3 (generic affine Hecke quotient). Let $G_{i}=q U_{i}-1$, then $E_{n}^{d}=E_{n}(q, \lambda)$ is the algebra generated by $\left\langle H_{n}, \chi^{d}\right\rangle / \rho$ where ρ is:

$$
\begin{align*}
& {\left[X, G_{i}\right]=0 \quad \forall i>1} \tag{24}\\
& {\left[G_{1} X G_{1}, X\right] \doteq 0 .} \tag{25}
\end{align*}
$$

Note that the representation theory of E_{n}^{d} is known, being determined by continuity with the wreath product \mathbb{Z}_{d}, S_{n} [9], or by generalizing the B_{n}-type Hecke algebra [10].

Proposition 1. For w a collection of indeterminates let $Q_{n}^{d}(q, w)$ be a quotient of $\left\langle H_{n}, \chi^{d}\right\rangle$ obeying (18) and relations such that $H_{2} \chi^{d} H_{2} \chi^{d} \geqslant \chi^{d} H_{2} \chi^{d} H_{2}$ as a vector space, and such that there exists a specialization

$$
\begin{equation*}
Q_{2}^{d}\left(1, w_{0}\right) \cong\left\langle X, G_{1}: X^{d}=1,\left[G_{1} X G_{1}, X\right]=0\right\rangle \tag{26}
\end{equation*}
$$

Then $Q_{n}^{d}(q, w)$ is unique up to isomorphism.
The conditions for Q_{n}^{d} are satisfied by both $B H_{n}^{d}$ and E_{n}^{d}. For example, $B H_{2}^{d}\left(1, a_{i j}=1\right)$ gives the specialization (26) (cf (23)). We therefore obtain:

Corollary 1.1. The generic algebras $B H_{n}^{d}$ and E_{n}^{d} are isomorphic.
An explicit isomorphism between $E_{n}^{d}(q, w)$ and the $B H_{n}^{d}(q, a)$ specialization defined by theorem 1 in the case where $k=d-1$ is given by equation (23) and by

$$
\begin{equation*}
c_{\alpha}=-i \sin \gamma \frac{\lambda_{1}+\lambda_{\alpha}}{\lambda_{1}-\lambda_{\alpha}} \tag{27}
\end{equation*}
$$

We end with an example of a concrete matrix solution of (1)-(5). Let $R: H_{n} \mapsto$ End $\left(\left(\mathbb{C}^{N}\right)^{\otimes n}\right)$ be the fundamental vertex model representation of H_{n} [11]. Then $R\left(U_{i}\right)$ acts on $\left(\mathbb{C}^{N}\right)^{\otimes n}$ as $1 \otimes 1 \otimes \cdots \otimes \mathcal{U} \otimes \cdots \otimes 1$ where \mathcal{U} is in the i th position and is given by:
$\mathcal{U}=\left(q+q^{-1}\right) \sum_{i=1}^{N} E_{i i} \otimes E_{i i}+\sum_{i \neq j}^{N} E_{i j} \otimes E_{j i}+q \sum_{i<j}^{N} E_{i i} \otimes E_{j j}+q^{-1} \sum_{i>j}^{N} E_{i i} \otimes E_{j j}$
where $E_{i j}$ are elementary matrices. To satisfy $\left[U_{i}, X\right]=0$ for $i>1$ we take $R(\chi)$ to act non-trivially only on the first \mathbb{C}^{N} of the tensor product. To keep our example simple, we look for a diagonal $R(\chi)$. We find that $v_{\alpha}=E_{\alpha \alpha} \otimes 1 \otimes 1 \cdots \otimes 1$, satisfy relations (19) provided that the parameters take the value $a_{\alpha \beta}=q$ for all $\alpha<\beta$. It is now possible to construct the full $K(\theta)$ corresponding to this representation. One finds that this $K(\theta)$ is non-degenerate only for $d=2$.

We will conclude with a summary and discussion. We have defined an extension, $B H_{n}^{d}$, of the Hecke algebra H_{n} and shown that certain specializations of it give algebraic solutions to (1)-(5). We have also shown that $B H_{n}^{d}$ and the affine Hecke algebra quotient E_{n}^{d} are generically isomorphic. This result provides a complete source of generic $B H_{n}^{d}$ representations which can be used to construct matrix solutions to (1)-(5). Further physically motivated conditions on $K(\theta)$ (see [2,7]), can be incorporated as constraints on acceptable representations. Work in this area is in progress. We note that the same affine Hecke algebra also provides representations for integrable statistical mechanics models with periodic boundary conditions [8].

The next step in this work is to classify solutions associated with non-faithful representations (i.e. quotients) of $B H_{n}^{d}$. It would also be interesting to study extensions χ of H_{n} which are not of the form χ^{d} (the most general 6 -vertex solution in [5] provides an example of this type), and to construct algebraic solutions to the reflection equation for other, non-Hecke, bulk solutions.

PPM thanks SERC and the Nuffield Foundation for partial financial support, and B W Westbury for useful conversations. DL acknowledges partial financial support from the US-Israel Binational Science Foundation and the Israel Academy of Science, and thanks E K Sklyanin for a useful conversation, and J Sonnenschein and S Yankielowicz for their support and encouragement.

References

[1] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[2] Skiyanin E K 1988 J. Phys. A: Math. Gen. 212375
[3] Cherednik I 1984 Theor. Math. Phys. 6155
[4] Mezincescu L and Nepomechie R 1991 J. Phys. A: Math. Gen. 24 L17-23; 1991 Int. J. Mod. Phys. A 6 5231; 1992 Int. J. Mod. Phys. 75657
[5] de Vega H J and Gonzalez-Ruiz A Preprint LPTHE-PAR 93/29
[6] Grimm U and Rittenberg V 1991 Nucl. Phys. B 354418
[7] Goshal S and Zamolodchikov Al Preprint Rutgers RU-93-20
[8] Levy D 1991 Phys. Rev. Lett. 671971
[9] Levy D and Martin P P 1994 Preprint City University CMP 594-105
Ariki S and Koike K 1994 A Hecke algebra of $(Z / r Z)$) S_{n} and . . . Preprint Tokyo University of Mercantile Marine (Maths)
[10] Hoefsmit P N 1974 PhD Thesis University of British Columbia
[11] Jimbo M 1989 Int. J. Mod. Phys. A 43759
[12] Humphreys JE 1990 Reflection Groups and Coxeter Groups (Cambridge: Cambridge University Press) ch 7 Martin P P 1991 Potts Models and Related Problems. . . (Singapore: World Scientific)

