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LETTER TO THE EDITOR 

Hecke algebra solutions to the reflection equation 

Dan Levyt and Paul Martin$ 
t Depamnent of Mathematics, Ben-Gurion University of the Negev, PO Box 653, Beer- 
Shew 84105, Ism1 
$ Mathematics Depamneng City Univwsity, Northampton Square, London EClV OHB. UK 

Received 27 April 1994 

Abstract. We mustruct solutions to Sklynnin’s reflection equation in the case in which the bulk 
Yang-Bzxter solution is of Hecke algebra type. Each solution constitutes an extension of the 
Heck algebra together with a spechal panmeter dependent boundasy operator, K(8) .  We solve 
for the defining relations of the extension, and for the spectral pammtter dependence of th~- 
boundary operator. The problem of finding concrete m h i x  solutions to the m%cfion equation 
is thus reduced to that of consaxcling finite dimensional representations of the Hecke algebra 
exteusion. This pmblem is solved in tht generic cast by emblishing isomorphism with an affine 
Hecke algebra quotient whose representation theory is known. 

In 2D lattice statistical mechanics it is found (see Baxter [l]) that the Yang-Baxter equations: 

Ri(el)Ri+l(B1 + ez)Ri(ez) = ~ ~ + ~ ( e ~ ) ~ ~ ( e ~  + W R ~ + ~ ~  (1) 

[Ri@l), Rj(&)I= 0 i # i k 1 (2) 

serve as integrability conditions. However, Baxter’s method of constructing commuting 
transfer matrices from a given solution of (1) and (2) requires periodic or quasi-periodic 
boundary conditions. In [2] Sklyanin proposed an ingenious extension of Baxter’s 
formalism which reconciles integrability with non-periodic boundaries-for a given solution 
of equations (1) and (2) one looks for a boundary operator K ( 0 )  satisfying the equations: 

R1(el - e z ~ ~ ( e l ) ~ l ( e l  +ez)~(ez) = K(eZ)R1(el +6wwI)R1cel  -ez) (3) 

[Ri(e’), K(e)i = o i > 2. (4) 

Solutions to (1x4) may lead to an integrable model whose boundary conditions are encoded 
in K ( 0 ) .  For Sklyanin’s scheme to work, &(e) and K ( 8 )  have to satisfy some additional 
conditions. In particular, the ‘unitarity condition on K@)’ which plays a role in the present 
work requires: 

K ( e ) K ( - e )  =my (6 scalar). (5) 

While many solutions to (1) and (2) are known, the study of (3) and (4) was less extensive 
(but see [MI which also discuss physical properties of some of the resulting models). 
Reckntly, Zamolodchikov and Ghoshal [7] discussed the application of equations ( 1 x 5 )  
to m integrable S-matrix theories. In the scattering picture, Ri@) represents a 2-particle 
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scattering in the bulk, while K ( 0 )  represents a reflection from a wall at the boundary [3], 
and so (3) is called the refection equation (RE). They point out that the collection of all 
integrable boundary scattering theories which have the same bulk scattering properties is 
an interesting object to study (see [7] for a full discussion and motivation). Here we study 
solutions to (3)-(5) for a given solution of (1) and (2) in a specific algebraic framework. 
We solve for K(6') in cases for which Ri(6') is given in terms of Hecke algebra generators: 

For q a scalar parameter (we will'also use q = exp(iy)), we denote by If. = H.(q) 
the A. Hecke algebra over field C(q) [lo, 121 which is generated by (1, U1, U,, . . . , U*-I} 
satisfying: 

UiUi = (q +q-l)Ui 

UiUj+lUj - U, = Ui+,UjUi+l - Ui+l 

li - j l  > 1. [Vi, Uj] = 0 

The 'Hecke bulk solution' of the Yang-Baxter equation (YBE) (1) is then 

&(e) = sin@ + 8)l- sin(8)Ui. (6) 

Any representation of If, gives a matrix solution to (1) and (2) via (6). Substituting (6) 
into (3) we get 

sin(@ +&)sin(O~ - ~ ~ [ U I K ( ~ ' I ) U I ,  K(Wl = sin(y +e1 -6'dsin(6'1 + e d ( K ( e ~ ) U ~ K ( e z )  

- K(e2)ulK(el)) + sin(y +e1 +ez)sin(ol - e z ) ( ~ l ~ ( e 1 ) ~ ( 8 2 )  

- K(BdK(6'dUd - sin(y + 81 + 6'2) sin(y +e1 - ez)[K(el) ,  K(Od1. (7) 

Let x be an associative algebra over C! with basis [XI, xz, . . . , x d } .  An algebraic solution 
to (1)-(5) is one in which K ( 8 )  takes values in such a x (cf equation (6)): 

To satisfy (4) we require [Vi, x ]  = 0 for i > 1. Inserting (8) into (7) and (5) we look 
for solutions in the form of a set of consistent 6' independent relations between U1 and x 
together with constraints on the functions fa(@). The relations will define a new algebra A 
which is an extension of If, by x. Thus, a Hecke algebra solution to (1-5) consists of an 
algebra A and a function K(6') E A. 

Such (A, K ( 8 ) )  pairs are given ford = 2 in the following section and for arbitrary d in 
theorem 1. Note that stronger algebraic relations allow relatively weaker constraints on the 
functions (e.g. (7) is solved by [U,, x ]  = 0 and x commutativ+we will call this the frivial 
solution). Here we look for a minimal set of relations which are sufficient for a solution, 
and determine fe(6') for thin set. Mapix solutions to (3H5) will thus arise from matrix 
representations of the If. extension. Next we facilitate the complete characterization of 
finite dimensional representations in the generic case by establishing an isomorphism with 
a !mown affine Hecke quotient. We conclude with a discussion of outstanding problems. 

For d = 1 we get x = C and K(6') = fl(8)l solves RE for any ft(6'). Unitarity gives 
fl(O)fi(-O) = q5(8). The case d = 2 better illustrates our programme, so we start with 
this. 

We will now consider the case d = 2. 
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(1, X : X2 = bX + c l )  where b All possibilities here are encapsulated by x(b, c) 
and c are scalar parameters. We get: ' 

m) = fiw + m x .  (9) 

An immediate consequence of (9) is that [K(01), K(&)] = 0 for all 81, 6'2. We assume that 
fz(0) is not identically zero, otherwise we are dealing with a d = 1 case. Then (7) gives: 

[U,, ~1(~iny(f~(e~)f~(e~)sin(2~~) - fi(el)fZ(&)sin(%l)) - bsin(81 - e z )  
x sin(e1 +e2 + Y)f2(el)f2(ez)) + (ulxulx - xulxul)f2(~l)fz(e2) 

x sin(81 - e,) sin(B1 + 0,) = 0. (10) 

We have two possibilities-the trivial solution, or [U,, XI # 0. In the latter case, since 
f@) # 0 we must assume a hear  relation between (UIXUIX - XUIXUI) and [U,, XI. 
We parameterize this relation in the following way: 

(UlXUlX - XU1XU,) = (bcos y + ksiny)[U1, XI (11) 

where k is e independent. The structure of the resulting Hecke extension is known, so it 
only remains to solve for fo(e). Inserting (11) into (10) and dividing by fi(e1)f,(&) we 
get 

(12) 
2 sin(%) 

(fany constant). me)  _.=_ 
fi (0) ~ k cos(28) + b sin(28j + f 

Taking c+4 = 1 the unitarity equation (5) gives: 

fl(e)fi(-e) + cf2(e)fz(-e) = 1 

f i(e)f2(-e) + fl(-e)f2(e) + bfi(e)f2(--e) = 0. 

(13) 

(14) 

Dividing both equations by f1(8)f1(-8) we find that (14) is automatically satisfied by (12), 
while (13) can be solved for f1 (e), e.g. 

kcos(28) + bsin(28) + f 
= kcos(28) + d s i n ( 2 e )  + f' 

Note that (15) is non-unique [7]. For example, if fl(e) is any solution to (I3), then 
fl(O)h(O) is also a solution provided that h(B)h(-e) = 1. 

Now we look at higher d solutions. 
We now give solutions for co'inmutative semi-simple x. of'arbieary dimension d. Let 

x d  be the d-dimensional commutative semi-simple C-algebra, i.e. x d  = C @ C CB . . . @ C 
(d summands). Let U, be the unique projection on the ath summand of x d ,  so that 
U& = & p p  and U, = 1. Then a convenient basis for xd is [q, U Z ,  ..., U*). 
Let {w1(8), wz(O), . . . , w&')] be the eigenvalues of K(O) E x d ,  then 

d 
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We will say that K ( 0 )  is a degenerate if it may be contained in a x" subalgebra of 
X"(d' < d). Note that this happens if and only if K ( 0 )  has degenerate eigenvalues. Note 
that the K ( 8 )  given in (16) solves the unitarity equation (5) with + = 1 iff 

w m w . ( - e )  = 1 VU. (17) 
Definition 1 (Hecke algebra extension). Let q be & indeterminate, let a- be a d(d - 1)/2- 
tuple of indetexminates ~ p ( 1  < 01 < p < d), and set nap = Zcos y -up, for 01 z p. Then 
BH,d = BH,(q, a-) is the C(q, a-) algebra generated by (H,(q) ,  xd)/ - where - is: 

[Xd. Vi] = 0 vi > 1 (18) 

[ U l K J l ,  up1 = aap(uuU1q3 - qd-hu.) = a,pL,p (19) 
A complete specialization of BH,d is one in which the subring @[q, a-] + C. In certain 
such specializations (we discuss existence shortly) we can construct a K ( 0 )  E xd which 
solves the reflection and unitariq equations. This construction is our main result (whose 
proof is by explicit calculation): 

Theorem 1. Let A be some complete specialization of BH,d and wl (0) a solution of (17) 
for 01 = 1. Then (A, K ( 0 ) )  is a non-degenerate solution of (1HS) provided that either: 

(a # B). 

1. If sin y = 0, then ~p = cosy for all U ,  p ,  and w,(0) obeys (17) Vu. 
2. If sin y # 0, then (A, K ( 0 ) )  belongs to one of the following classes. Introduce 

c~ = a,@ - cosy, c, = clu, and let 8, E E {-1,1). Then each decreasing sequence 
S = ( 0 1 1 . ~ 2 , .  . .,01k) with 01j E (2,3, .  . . , d }  and choice (8, E )  determines a class of 
solutions with d continuous parameters. To obtain a specific solution in a given class we 
may choose any values for the k parameters CA with A E S, provided that they are distinct, 
and distinct from CO = 6 . (i siny), any set of distinct values for d - 1 - k parameters 
&(or E (2.3, . . . , d} ,  01 S) and any value for a parameter &. Then A is determined as 
follows, where 01, p, A, p # 1, 01, ,9 6 S and one or both of A, p E S 

and K ( 0 )  is determined by 

(21) 
w.(@) 
w1 (0) 

c, cos(20) f sin(y) sin(%) + d, 
c, cos(28) - sin(y) sin(20) + d, Yu(e) = - - - V O ~  E 12, . . . , d ]  

where for A E S 

dub (sin' y + c,,cl) + E sin y (cak - A )  c' + sinz y - d& 
dh = c& +sinZ y 7. (22) 

Let A be as above and let A' be its quotient by relations Lap = 0 for some (or, p )  pairs. 
Then (A', K ( 0 ) )  is a solution of (I)+) with &(e) satisfying weaker conditions than those 
in theorem 1. In the extreme case-L,p = 0 for all (01, p ) ,  and no constraints on w, besides 
(17)-we reproduce the trivial solution [Ul, x"] = 0. 

Note that (5) implies y,(O) = il. The +1 value is realized for all values of do except 
when dp = -cp, and then y,(O) = -1. For example, choosing dok = -ceh and 6 = 1 gives 
de = -c, for all 01 E S (see (22)), and leads to a K(0)  which is not proportional to unity. 

We next set up the mechanism to determine explicit matrix solutions. 
Here we show that BH,d is generically isomorphic to a finite dimensional quotient of 

the a f h e  Hecke algebra of type A,, whose structure. is known. 
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Definition 2. For h = (A,, Az, . . . ,AD) a d-tuple of indetenninates, define xd as the 
commutative algebra over C(h) with generator X obeying: nf=, (X - A,) = 0. 

The algebras xd and xd are isomorphic via 

d 
x H CA& 

Ct=l 

A specialization of x" is not isomorphic to x" unless the images of A, are distinct. 

Dejinition 3 (generic affine H e c k  quotient). Let GI = qui - 1, then'E," = En(q. A) is the 
algebra generated by (Hn. p ) / p  where p is: 

[X,  Gi] = 0 Vi > 1 

[ G I X G I ,  XI 0. 

Note that the representation theory of E," is known, being determined by continuity with 
the wreath product 4 z S. [9], or by generalizing the &type Hecke algebra [ lo ] .  

Pmposition I. For w a collection of indeterminates let Qi(q .  w )  be a quotient of (Ha, x d )  
obeying (18) and relations such that H2xdHzxd 2 xdHzxdHz as a vector space, and such 
that there exists a specialization 

Qf(1, WO) E ( X ,  G I  : X d  = 1 ,  [ G I X G I ,  XI = 0) .  (26) 

Then Ql(q.  w )  is unique up to isomorphism. 

gives the specialization (26) (cf (23)). We therefore obtain: 

Corolhry 1.1. The generic algebras BH; and E," are isomorphic. 

by theorem 1 in the case where k = d - 1 is given by equation (23) and by 

The conditions for Qf are satisfied by both EH,d and E,". For example, BiYi(1, aij = 1) 

An explicit isomorphism between E,"(q, w )  and the BH;(q, a )  specialization defined 

We end with an example of a concrete matrix solution of (1H5). Let R : H, H 

End((CN)@n) be the fundamental vertex model representation of H,, [ l l ] .  Then R(U;) acts 
on (CN)@n as 10 1 0  ... @U@ ... 0 1 whereU is in the ith position and is given by: 

where Ei, are elementary matrices. To satisfy [Vi, XI = 0 for i > 1 we take R ( x )  to act 
non-trivially only on the first CN of the tensor product. To keep our example simple, we 
look for a diagonal R(x) .  We find that U, = E,, 0 1 Q 1. .  .8 1, satisfy relations (19) 
provided that the parameters take the value a , ~  = 4 for all (Y < f l .  It is now possible to 
construct the full K(B) corresponding to this representation. One finds that this K ( 8 )  is 
non-degenerate only for d = 2. 
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We will conclude with a summary and discussion. We have defined an extension, 
BH;, of the Hecke algebra H. and shown that certain specializations of it give algebraic 
solutions to (I)+). We have also shown that BH; and the affme Hecke algebra quotient 
E," are generically isomorphic. This result provides a complete source of generic BH,d 
representations which can be used to construct matrix solutions to (1)+). Further physically 
motivated conditions on K ( 0 )  (see [2,7]), can be incorporated as constraints on acceptable 
representations. Work in this area is in progress. We note that the same affme Hecke algebra 
also provides representations for integrable statistical mechanics models with periodic 
boundary conditions [SI. 

The next step in this work is to classify solutions associated with non-faithtid 
representations (i.e. quotients) of BH;. It would also be interesting to study extensions 
x of H,, which are not of the form xd (the most general 6-vertex solution in 151 provides 
an example of this type), and to construct algebraic solutions to the reflection equation for 
other, non-Hecke, bulk solutions. 
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